Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Retrospective judgments require decision-makers to gather information over time and integrate that information into a summary statistic like the average. Many retrospective judgments require putting equal weight on early and late information, in contrast to prospective judgments that involve predicting the future and so rely more on late information. We investigate how people weight information over time when continuously reporting the average stimulus strength in a sequence of displays. We investigate the consistency of these temporal profiles across perceptual and value-based tasks using both behavior and functional magnetic resonance imaging (fMRI) data. We found that people display remarkably consistent temporal weighting functions across choice domains, with a generally strong recency bias and modest primacy bias. The fMRI data revealed evidence-tracking activity in the cuneus in both tasks and in the left dorsolateral prefrontal cortex in the value-based task. Finally, a network of cognitive control regions is more active for people who exhibit a stronger primacy vs. recency bias. Together, our behavioral findings indicate that people consistently overweight recency when evaluating past information, and the neural data suggest that overcoming this tendency may require cognitive control.more » « lessFree, publicly-accessible full text available March 26, 2026
-
Evidence-accumulation models (EAMs) are powerful tools for making sense of human and animal decision-making behavior. EAMs have generated significant theoretical advances in psychology, behavioral economics, and cognitive neuroscience and are increasingly used as a measurement tool in clinical research and other applied settings. Obtaining valid and reliable inferences from EAMs depends on knowing how to establish a close match between model assumptions and features of the task/data to which the model is applied. However, this knowledge is rarely articulated in the EAM literature, leaving beginners to rely on the private advice of mentors and colleagues and inefficient trial-and-error learning. In this article, we provide practical guidance for designing tasks appropriate for EAMs, relating experimental manipulations to EAM parameters, planning appropriate sample sizes, and preparing data and conducting an EAM analysis. Our advice is based on prior methodological studies and the our substantial collective experience with EAMs. By encouraging good task-design practices and warning of potential pitfalls, we hope to improve the quality and trustworthiness of future EAM research and applications.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Evidence accumulation models (EAMs) are powerful tools for making sense of human and animal decision-making behaviour. EAMs have generated significant theoretical advances in psychology, behavioural economics, and cognitive neuroscience, and are increasingly used as a measurement tool in clinical research and other applied settings. Obtaining valid and reliable inferences from EAMs depends on knowing how to establish a close match between model assumptions and features of the task/data to which the model is applied. However, this knowledge is rarely articulated in the EAM literature, leaving beginners to rely on the private advice of mentors and colleagues, and on inefficient trial-and-error learning. In this article, we provide practical guidance for designing tasks appropriate for EAMs, for relating experimental manipulations to EAM parameters, for planning appropriate sample sizes, and for preparing data and conducting an EAM analysis. Our advice is based on prior methodological studies and the authors’ substantial collective experience with EAMs. By encouraging good task design practices, and warning of potential pitfalls, we hope to improve the quality and trustworthiness of future EAM research and applications.more » « less
-
Abstract To accurately categorize items, humans learn to selectively attend to the stimulus dimensions that are most relevant to the task. Models of category learning describe how attention changes across trials as labeled stimuli are progressively observed. The Adaptive Attention Representation Model (AARM), for example, provides an account in which categorization decisions are based on the perceptual similarity of a new stimulus to stored exemplars, and dimension-wise attention is updated on every trial in the direction of a feedback-based error gradient. As such, attention modulation as described by AARM requires interactions among processes of orienting, visual perception, memory retrieval, prediction error, and goal maintenance to facilitate learning. The current study explored the neural bases of attention mechanisms using quantitative predictions from AARM to analyze behavioral and fMRI data collected while participants learned novel categories. Generalized linear model analyses revealed patterns of BOLD activation in the parietal cortex (orienting), visual cortex (perception), medial temporal lobe (memory retrieval), basal ganglia (prediction error), and pFC (goal maintenance) that covaried with the magnitude of model-predicted attentional tuning. Results are consistent with AARM's specification of attention modulation as a dynamic property of distributed cognitive systems.more » « less
-
The link between mind, brain, and behavior has mystified philosophers and scientists for millennia. Recent progress has been made by forming statistical associations between manifest variables of the brain (e.g., electroencephalogram [EEG], functional MRI [fMRI]) and manifest variables of behavior (e.g., response times, accuracy) through hierarchical latent variable models. Within this framework, one can make inferences about the mind in a statistically principled way, such that complex patterns of brain–behavior associations drive the inference procedure. However, previous approaches were limited in the flexibility of the linking function, which has proved prohibitive for understanding the complex dynamics exhibited by the brain. In this article, we propose a data-driven, nonparametric approach that allows complex linking functions to emerge from fitting a hierarchical latent representation of the mind to multivariate, multimodal data. Furthermore, to enforce biological plausibility, we impose both spatial and temporal structure so that the types of realizable system dynamics are constrained. To illustrate the benefits of our approach, we investigate the model’s performance in a simulation study and apply it to experimental data. In the simulation study, we verify that the model can be accurately fitted to simulated data, and latent dynamics can be well recovered. In an experimental application, we simultaneously fit the model to fMRI and behavioral data from a continuous motion tracking task. We show that the model accurately recovers both neural and behavioral data and reveals interesting latent cognitive dynamics, the topology of which can be contrasted with several aspects of the experiment.more » « less
An official website of the United States government
